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The problem of  fluid flow in a channel with a cavity is of  interest for numerous applications. Many papers (see the 
review [ 1 ]) have been devoted to different variants of  this problem for the case of  a Newtonian fluid. The literature, how- 
ever, contains hardly any papers dealing with corresponding flows of non-Newtonian fluids [2, 3]. Yet the problem of  a 
flow of  viscoplastic fluid in a gap with a depression is of interest for oil-drilling practice, since it models to some extent  the 
process of  cementat ion of wells with cavities in the walls. 

1. As a model of  a non-Newtonian fluid we selected a quasiplastic Williamson fluid [4], in which the effective vis- 
cosity r/ is given by the expression ~1 = ~1~ -? %/(b § -1) , where ~ is the dynamic Newtonian viscosity at infinitely high 

shear velocities; r o is an analog of  the ult imate shear stress of a Bingham fluid; b is a parameter  of the Williamson model;  I 
is the square root  of  the second invariant of  the strain rate tensor. When b = 0 the model represents a viscoplastic Bingham 
fluid; r o = 0 corresponds to the case of  a Newtonian fluid. 

We write the dimensionless equations for plane steady flow in terms of the stream function ~b and vorticity gZ: 

Re \ ~  ou ~ ~ / = -  h (v~) - -  .QzXv = 4 asay Ozay r .~x.2 o~j --51 ~ax 2 o j" / '  

A~ = - - ~ ,  (1.1) 

As units of  length and velocity we select the channel half-width d and the mean velocity U, determined from the 
flow rate; u = r / / ~  is the c'imensionless effective viscosity. Equations (1.1) contain three similarity criteria: Re = Upd/q~ 

is the Reynolds number, T = "ropd2/~l~ is an analog of  the Hedstrgm number for a Bingham fluid, and B = bpdV~l= is the 

dimensionless parameter  of  the Williamson model. 

The shape of  the calculated region is shown in Figs. 1 and 2. As boundary conditions in the entrance and exit 
sections, situated sufficiently far from the cavity, the exact solution of Eq. (1.1), corresponding to plane-parallel flow [5], 
is used. The other boundaries are regarded as solid and the conditions for ~ and gZ on them are imposed in the usual way. 

To solve the equations we used a difference scheme involving approximations of the first derivatives of the vorticity 
in (1.1) by one-sided differences directed "against the flow," and a central-difference approximation of the other derivatives. 
The system of  difference equations was solved by Liebmann's iterative method with successive low relaxation. 

2. We consider some of  the results of the calculations. Ot' most  interest are flows in long and deep cavities, which 
are often encountered in natural conditions. Hence, all the streamline maps referred to below relate to a cavity with 
dimensionless depth H = 20 and length L = 120. 

A picture of  a flow of Newtonian fluid is shown in Fig. la  (Re = 1800). We consider a je t  formed by sudden ex- 
pansion of  the cross section of  the channel and impinging on the rear wall of the cavity, and also the region of the slower 
return flow near the solid boundaries of the cavity. The center of  the eddy motion is much nearer the real wall, which 
blocks the path of  the jet ,  and deflects  the combined mass sharply into the cavity. As the calculations showed, a similar 
flow structure is found in square cavities, which is in good qualitative agreement with experimental data (see, e.g. [6]). 

The nature of the motion of  a non-Newtonian fluid depends considerably on the inhomogeneity of the spatial dis- 
tr ibution of  the effective viscosity, which depends on the velocity gradients and the parameters B, T, and Re. 

The parameter  B was chosen so that the considered fluid was similar in its properties to a Bingham fluid. We 
usually put  B = 0.01 T; as test calculations showed, a further reduction of  B has practically no effect on the flow structure. 

With increase in the Hedstr~m number T from zero to T = 225 at constant Re = 1800 (Fig. la, b) the formation 
of  a secondary vortex and a stagnation region at the bot tom of the cavity is accompanied by a reduction of the volume of 
the cavity occupied by the main vortex. The foi~nation of a stagnation region at the bot tom of  the cavity is probably due 
to its great depth. Calculations made for a cavity with H = 9 and L = 60 (i.e., for H/L close to 20/120) reveal similar flow 
structures, but  without a stagnation region. 
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Fig. I Fig. 2 

Reduction of  the Reynolds number with parameter T constant and fairly large (T = 225) can lead to a significant 
change in the flow region - this is the transition illustrated in Figs. 1 b and 2a. The center of  the main vortex is shifted 
towards the far edge of  the cavity, its intensity in this case is greatly reduced, at the rear edge of  the cavity a stagnation 
region is formed, and there is also some intrusion of  the main through flow into the cavity to a depth of  the order of  the 
channel width. 

Figure 2b shows the creeping flow regime observed at low Re and large T. A further decrease in Re leads, on one 
hand, to an increase in  viscosity and, on the other, to a reduction of  the contr ibution of  the inertial terms to the equation 
of  motion. At  very low Re there is a considerable intrusion of  flow in the middle of  the cavity - this regime was con- 
sidered in detail in [5]. 

An analysis of  the calculated data shows that  with Re constant the effect of  increase in T on the flow structure is 
similar to some extent  to the effect of  reduction of Re with T constant. 

We briefly recall the results relating to cavities of other dimensions. For  instance, a series of calculations made for 
cavities of  different depths (from H = 4 to H = 32) with length L = 120 showed that in the flow regime illustrated in Fig. 
2a (Re = 1800, T = 225) the absolute depth of  intrusion at the rear edge of the cavity increases a little with reduction of  
H. When H = 4 the through flow at the rear edge reaches the " b o t t o m "  of  the cavity. 

In square cavities the changes in flow structure are not  so appreciable as in long cavities. The center of the main 
vortex here is always located at the rear edge of  the cavity, and a flow with one or several vortices is observed (depending 
on the depth of  the cavity). 
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RHEOLOGICAL EQUATIONS OF STATE OF WEAKLY CONCENTRATED 

SUSPENSIONS OF DEFORMABLE ELLIPSOIDAL PARTICLES 

Kuak Van Dong and Yu. I. Shmakov UDC 532.529 

In [ I],  from the standpoint of a structural-continuous approach [2, 3], rheological equations of  state are obtained 
for dilute suspensions of  deformable ellipsoidal particles, having internal elasticity and viscosity, with a dispersion medium 
which is a Newtonian liquid�9 In the present article these results are generalized for larger concentrations�9 Taking account 
of  the effect of  the hydrodynamic interaction of  suspended particles on the rheological behavior of a suspension is effected 
using the Simha method [41. 

As in [ 1 ], we shall model the suspended particles by an ellipsoid, having an internal linear elasticity and a linear 
viscosity (a Voigt body), changing its dimensions during the process of  interaction with the dispersion medium, but conserv- 
ing its volume and retaining the form of an ellipsoid of revolution. To set up the rheological equations of state of  the 
suspensions under consideration using a structural-continuous approach, it is necessary to determine the perturbations intro- 
duced into the inhomogeneous flow of  a dispersion medium by a suspended particle; here, to take account of  the hydro- 
dynamic interaction of  the suspended particles, the boundary conditions "at infinity," in accordance with [4], must be 
referred to the surface of  a sphere screening the particle; the sphere has a center coinciding with the center of  the particle, 

and a radius R = (ab 2/q~)1/3, where 2a and b are the length of the axis of  rotation and the equatorial radius of the particle, 
respectively; q~ is the volumetric concentration of suspended particles. 

We shall seek the solution of  the hydrodynamic problem in the Stokes approximation by the method of  successive 
approximations [ 5]. As a first approximation we take the solution obtained in [ 1 ] for the case where an unbounded dis- 
persion flows around the particle, but where the boundary conditions "at infinity" are referred to the surface of a sphere, 
whose radius considerably exceeds the effective radius of  the particle. In a movable system of coordinates x., with its 

�9 . . 1 
ongm at the center of  the particle and axes coinciding in direction with the directions of  the axes of  an ellipsoidal particle, 
this solution has the form 

OZj 029. 
ui = uo~ ~- ~ ( D ~ z i )  - -  e~ ihK j ~ § c j ~ x j  o:~iO=--~ 

' 0.. i 

O~a ~ + 4~'1' 5 (l'. 2 -  ,'2) O'l' 
- -C~Oxj  ~ 3  (ch~-c~h)x"  . R~ + n ~  ox--~' (1) 

029. 
P = Po @ 2~t%i ox iox j ,  

where u i is the velocity; p is the pressure; uoi, Po are the velocity and the pressure of  the unperturbed flow; r is the 

modulus of  the radius-vector; p is the dynamic viscosity coefficient of the dispersion medium; ~ ,  • Dj, Kj are values 

determined in [61; cij are values determined in [ 1]; ~ = cij Nxj ; e~k is a skew-symmetric Kronecker symbol�9 

The first approximation (1) does not satisfy the boundary conditions at the surface of  the particle; here, the diver- 
gences do not exceed values of  the order of  O(R "3). 

We obtain the second approximation of  the problem under consideration, adding to (1) a partial solution of the 
problem, satisfying the following boundary conditions: 

4 (Chg - -  Cil~ ) Xk 5 01~ 
ui l,~, := ~ e? o.~:i' , 

t t i - - ~ - O  f o r  r - - ~  c o ,  

where uit w is the velocity at the surface of  the particle. This partial solution has the form 
0 07i  , ~ 02f~ [ j  c)f~ _ . O~D. 

where 
3d~. 2 
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